Statistical Learning and Modeling in Data Analysis, Kartoniert / Broschiert
Statistical Learning and Modeling in Data Analysis
- Methods and Applications
(soweit verfügbar beim Lieferanten)
- Herausgeber:
- Simona Balzano, Giovanni C. Porzio, Renato Salvatore, Domenico Vistocco, Maurizio Vichi
- Verlag:
- Springer, 07/2021
- Einband:
- Kartoniert / Broschiert, Paperback
- Sprache:
- Englisch
- ISBN-13:
- 9783030699437
- Artikelnummer:
- 10673804
- Umfang:
- 192 Seiten
- Nummer der Auflage:
- 21001
- Ausgabe:
- 1st edition 2021
- Gewicht:
- 300 g
- Maße:
- 235 x 155 mm
- Stärke:
- 10 mm
- Erscheinungstermin:
- 14.7.2021
- Hinweis
-
Achtung: Artikel ist nicht in deutscher Sprache!
Klappentext
Chapter 1 - Interpreting E¿ects in Generalized Linear Modeling (Alan Agresti, Claudia Tarantola, and Roberta Varriale).- Chapter 2 - ACE, AVAS and Robust Data Transformations: Performance of Investment Funds (Anthony C. Atkinson, Marco Riani, Aldo Corbellini, and Gianluca Morelli).- Chapter 3 - Predictive Principal Component Analysis (Simona Balzano, Maja Bozic, Laura Marcis, and Renato Salvatore).- Chapter 4 - Robust model-based learning to discover new wheat varieties and discriminate adulterated kernels in X-ray images (Andrea Cappozzo, Francesca Greselin, and Thomas Brendan Murphy).- Chapter 5 - A dynamic model for ordinal time series: an application to consumers' perceptions of in¿ation (Marcella Corduas).- Chapter 6 - Deep learning to jointly analyze images and clinical data for disease detection (Federica Crobu and Agostino Di Ciaccio).- Chapter 7 -Studying A¿liation Networks through Cluster CA and Blockmodeling (Daniela D'Ambrosio, Marco Serino, and Giancarlo Ragozini).- Chapter 8 - Sectioning Procedure on Geostatistical Indices Series of Pavement Road Pröles (Mauro D'Apuzzo, Rose-Line Spacagna, Azzurra Evangelisti, Daniela Santilli, and Vittorio Nicolosi).- Chapter 9 - Directional supervised learning through depth functions: an application to ECG waves analysis (Houyem Demni).- Chapter 10 - Penalized vs. contrained approaches for clusterwise linear regression modelling (Roberto Di Mari, Stefano Antonio Gattone, and Roberto Rocci).- Chapter 11 - E¿ect measures for group comparisons in a two-component mixture model: a cyber risk analysis (Maria Iannario and Claudia Tarantola).- Chapter 12 - A Cramér-von Mises test of uniformity on the hypersphere (Eduardo García-Portugués, Paula Navarro-Esteban, and Juan Antonio Cuesta-Albertos).- Chapter 13 - On mean and / or variance mixtures of normal distributions (Sharon X. Lee and Geörey J. McLachlan).- Chapter 14 - Robust depth-based inference in elliptical models (Stanislav Nagy and Ji¿í Dvöák).- Chapter 15 - Latent class analysis for the derivation of marketing decisions: An empirical study for BEV battery manufacturers (Friederike Paetz).- Chapter 16 - Small Area Estimation Diagnostics: the Case of the Fay-Herriot Model (Maria Chiara Pagliarella).- Chapter 17 - A comparison between methods to cluster mixed-type data: Gaussian mixtures versus Gower distance (Monia Ranalli and Roberto Rocci).- Chapter 18 - Exploring the gender gap in Erasmus student mobility ¿ows (Marialuisa Restaino, Ilaria Primerano, and Maria Prosperina Vitale).