Optimization, Learning Algorithms and Applications, Kartoniert / Broschiert
Optimization, Learning Algorithms and Applications
- 5th International Conference, OL2A 2025, Sesti Levante, Italy, April 28-30, 2025, Proceedings, Part II
(soweit verfügbar beim Lieferanten)
- Herausgeber:
- Ana I. Pereira, Florbela P. Fernandes, João P. Coelho, João P. Teixeira, José Lima, Maria F. Pacheco, Luca Oneto, Rui P. Lopes
- Verlag:
- Springer, 10/2025
- Einband:
- Kartoniert / Broschiert
- Sprache:
- Englisch
- ISBN-13:
- 9783032001399
- Artikelnummer:
- 12514842
- Umfang:
- 280 Seiten
- Gewicht:
- 429 g
- Maße:
- 235 x 155 mm
- Stärke:
- 16 mm
- Erscheinungstermin:
- 2.10.2025
- Hinweis
-
Achtung: Artikel ist nicht in deutscher Sprache!
Weitere Ausgaben von Optimization, Learning Algorithms and Applications |
Preis |
|---|---|
| Buch, Kartoniert / Broschiert, Englisch | EUR 98,56* |
| Buch, Kartoniert / Broschiert, Englisch | EUR 76,66* |
| Buch, Kartoniert / Broschiert, Englisch | EUR 82,13* |
Klappentext
.- Optimization in the SDG context. .- Application of Continuous and Periodic Review Models to Optimize Inventory Management in Dynamic Demand Scenarios. .- Social Context in Fake News Diffusion. .- Integrating Renewable Energy into Sustainability Metrics: a multicriteria decision. .- A Secure Architecture for Supply-chain Orders Exchange between Textile and Clothing Companies. .- Machine Learning. .- Partial Knowledge Predictive Models for Hydrocarbon Storage. .- Districting Methods for Water Distribution Network. .- Enhancing Soil Organic Carbon Prediction: A Machine Learning Approach with Outlier Removal. .- A Personalized Math Learning Experience with Clustering and Random Forest Algorithms. .- Macroeconomics' Forecasting using Machine Learning Approaches by Policy Makers: A Case Study Analysis. .- TI-FPCA: Effective and Interpretable Dimensionality Reduction with Transform-Invariant Functional Principal Component Analysis. .- Prediction of Average Power Produced by Wind Turbines Using MLP Neural Networks. .- OML-AD: Online Machine Learning for Anomaly Detection in Time Series Data. .- Machine Learning and Artificial Intelligence in Robotics. .- AI-Powered Tutoring for Personalized Learning. .- Markerless Geometric Inspection Planning based on Greedy Algorithm with Registration Stability Constraint. .- Comparing RL Policies for Robotic Pusher. .- Reward-function design for Discrete and Continuous Mapless Navigation. .- Object Classification using 2D-LiDAR and YOLO for Robot Navigation.