Dipl. -Math. Felix F. Flemisch: The Strong Sylow Theorem for the Prime p in Projective Special Linear Locally..., Gebunden
The Strong Sylow Theorem for the Prime p in Projective Special Linear Locally Finite Groups - Part 3 of a Trilogy
- Manuscript on Sylow theory in locally finite groups - Part 3 of a Trilogy
(soweit verfügbar beim Lieferanten)
- Verlag:
- BoD - Books on Demand, 11/2023
- Einband:
- Gebunden, HC gerader Rücken kaschiert
- Sprache:
- Englisch
- ISBN-13:
- 9783757860011
- Artikelnummer:
- 11605395
- Umfang:
- 48 Seiten
- Nummer der Auflage:
- 23002
- Ausgabe:
- 2. Auflage
- Gewicht:
- 437 g
- Maße:
- 303 x 215 mm
- Stärke:
- 8 mm
- Erscheinungstermin:
- 27.11.2023
- Hinweis
-
Achtung: Artikel ist nicht in deutscher Sprache!
Weitere Ausgaben von The Strong Sylow Theorem for the Prime p in Projective Special Linear Locally Finite Groups - Part 3 of a Trilogy |
Preis |
---|
Klappentext
In Part 3 of the First Trilogy "Characterising Locally Finite Groups Satisfying the Strong Sylow Theorem for the Prime p" & "About the Strong Sylow Theorem for the Prime p in Simple Locally Finite Groups" & "The Strong Sylow Theorem for the Prime p in Projective Special Linear Locally Finite Groups" we continue the program begun in [10] to optimise along the way 1) its beautiful Theorem about the first type "An" of infinite families of finite simple groups step-by-step to further types by proving it for the second type "A = PSLn". We start with proving the beautiful Conjecture 2 of [10] about the General Linear Groups over (commutative) locally finite fields, stating that their rank is bounded in terms of their p-uniqueness, and then break down this insight to the Special Linear Groups and the Projective Special Linear (PSL) Groups over locally finite fields. We close with suggestions for future research -> regarding the remaining rank-unbounded types (the "Classical Groups") and the way 2), -> regarding the (locally) finite and p-soluble groups, and -> regarding Augustin-Louis Cauchy's and Évariste Galois' contributions to Sylow theory in finite groups, which culminate in the announcement of a Second Trilogy.