Alessandro Arsie: Geometry of Integrable Systems, Gebunden
Geometry of Integrable Systems
- An Introduction
Sie können den Titel schon jetzt bestellen. Versand an Sie erfolgt gleich nach Verfügbarkeit.
- Verlag:
- Springer International Publishing AG, 11/2025
- Einband:
- Gebunden
- Sprache:
- Englisch
- ISBN-13:
- 9783031962813
- Artikelnummer:
- 12512482
- Umfang:
- 415 Seiten
- Erscheinungstermin:
- 10.11.2025
- Hinweis
-
Achtung: Artikel ist nicht in deutscher Sprache!
Klappentext
This textbook explores differential geometrical aspects of the theory of completely integrable Hamiltonian systems. It provides a comprehensive introduction to the mathematical foundations and illustrates it with a thorough analysis of classical examples.
This book is organized into two parts. Part I contains a detailed, elementary exposition of the topics needed to start a serious geometrical analysis of complete integrability. This includes a background in symplectic and Poisson geometry, the study of Hamiltonian systems with symmetry, a primer on the theory of completely integrable systems, and a presentation of bi-Hamiltonian geometry.
Part II is devoted to the analysis of three classical examples of integrable systems. This includes the description of the (free) n-dimensional rigid-body, the rational Calogero-Moser system, and the open Toda system. In each case, ths system is described, its integrability is discussed, and at least one of its (known) bi-Hamiltonian descriptions is presented.
This work can benefit advanced undergraduate and beginning graduate students with a strong interest in geometrical methods of mathematical physics. Prerequisites include an introductory course in differential geometry and some familiarity with Hamiltonian and Lagrangian mechanics.
