Xinyi Yuan: Adelic Line Bundles on Quasi-Projective Varieties, Kartoniert / Broschiert
Adelic Line Bundles on Quasi-Projective Varieties
Buch
Erscheint bald
Lassen Sie sich über unseren eCourier benachrichtigen, sobald das Produkt bestellt werden kann.
Lassen Sie sich über unseren eCourier benachrichtigen, sobald das Produkt bestellt werden kann.
- Verlag:
- Princeton University Press, 01/2026
- Einband:
- Kartoniert / Broschiert
- Sprache:
- Englisch
- ISBN-13:
- 9780691271736
- Umfang:
- 240 Seiten
- Erscheinungstermin:
- 13.1.2026
- Hinweis
-
Achtung: Artikel ist nicht in deutscher Sprache!
Weitere Ausgaben von Adelic Line Bundles on Quasi-Projective Varieties |
Preis |
---|---|
Buch, Gebunden, Englisch | EUR 183,45* |
Ähnliche Artikel
Shou-Wu Zhang, Xinyi Yuan
Adelic Line Bundles on Quasi-Projective Varieties
Buch
Xinyi Yuan, Shou-Wu Zhang, Wei Zhang
The Gross-Zagier Formula on Shimura Curves
Buch
Vorheriger Preis EUR 107,35, reduziert um 4%
Aktueller Preis: EUR 102,04
Christian Huber
Introduction to Numerical Modeling in the Earth Sciences
Buch
Aktueller Preis: EUR 222,91
Klappentext
A comprehensive new theory of adelic line bundles on quasi-projective varieties over finitely generated fieldsThis book introduces a comprehensive theory of adelic line bundles on quasi-projective varieties over finitely generated fields, developed in both geometric and arithmetic contexts. In the geometric setting, adelic line bundles are defined as limits of line bundles on projective compactifications under the boundary topology. In the arithmetic setting, they are defined as limits of Hermitian line bundles on projective arithmetic compactifications, also under the boundary topology. After establishing these foundational definitions, the book uses the theory to explore key concepts such as intersection theory, effective sections, volumes, and positivity of adelic line bundles. It also applies these results to study height functions of algebraic points and prove an equidistribution theorem on quasi-projective varieties. This theory has broad applications in the study of numerical, dynamical, and Diophantine properties of moduli spaces, quasi-projective varieties, and varieties over finitely generated fields.