Machine Learning and Big Data-enabled Biotechnology, Gebunden
Machine Learning and Big Data-enabled Biotechnology
Sie können den Titel schon jetzt bestellen. Versand an Sie erfolgt gleich nach Verfügbarkeit.
- Herausgeber:
- Hal S. Alper
- Verlag:
- Wiley-VCH GmbH, 02/2026
- Einband:
- Gebunden
- Sprache:
- Englisch
- ISBN-13:
- 9783527354740
- Artikelnummer:
- 12359203
- Umfang:
- 432 Seiten
- Sonstiges:
- 19 schwarz-weiße Tabellen
- Erscheinungstermin:
- 4.2.2026
- Hinweis
-
Achtung: Artikel ist nicht in deutscher Sprache!
Klappentext
Enables researchers and engineers to gain insights into the capabilities of machine learning approaches to power applications in their fields
Machine Learning and Big Data-enabled Biotechnology discusses how machine learning and big data can be used in biotechnology for a wide breadth of topics, providing tools essential to support efforts in process control, reactor performance evaluation, and research target identification.
Topics explored in Machine Learning and Big Data-enabled Biotechnology include:
- Deep learning approaches for synthetic biology part design and automated approaches for GSM development from DNA sequences
- De novo protein structure and design tools, pathway discovery and retrobiosynthesis, enzyme functional classifications, and proteomics machine learning approaches
- Metabolomics big data approaches, metabolic production, strain engineering, flux design, and use of generative AI and natural language processing for cell models
- Automated function and learning in biofoundries and strain designs
- Machine learning predictions of phenotype and bioreactor performance
Machine Learning and Big Data-enabled Biotechnology earns a well-deserved spot on the bookshelves of reaction, process, catalytic, and environmental engineers seeking to explore the vast opportunities presented by rapidly developing technologies.
